Estadísticas vs parámetro: todo lo que necesitas saber
Cuando era niño, siempre pensaba, ¿cómo saben los reporteros que se acerca la tormenta? ¿Y cómo se dice que un determinado hospital ha admitido el máximo número de pacientes con accidentes? ¿Cómo es todo esto posible?
Pero a medida que crecí, aprendí sobre él. Estadísticas Y parámetros. Ahora, conozco las estadísticas que se usan para el pronóstico del tiempo y los conceptos de parámetros que se usan para saber el número máximo de accidentes registrados en un hospital en particular.
Pero mucha gente tiene dudas sobre las estadísticas con respecto al parámetro. Por lo tanto, se hace necesario comprender la diferencia fundamental entre estos dos términos.
Pero muchos estudiantes tienen dificultad para entender los términos estadística y parámetro.
Ambos términos pueden sonar similares, pero hay una diferencia entre estos dos. Estadística y parámetro son los dos términos utilizados para determinar el valor de un tamaño de muestra dado.
Un parámetro considera a cada persona que pertenece a todo el grupo. Al mismo tiempo, las estadísticas involucran los datos que obtiene de las muestras proporcionadas e ignora el resto del aspecto de la comunidad. Si aún encuentras alguna dificultad para entender estos dos términos, sigue leyendo este post.
¿Cuáles son los parámetros?
Antes de continuar con las estadísticas frente a los parámetros, ¿obtenemos información sobre parámetros y estadísticas?
A parámetro representa las características de toda la población. Las características pueden ser la mediana, la media o la moda de los datos. Estos se derivan de los componentes que se toman como un todo.
Aquí, el término de población puede incluir cualquier unidad que consista en un personaje familiar. Y es relevante para los atributos del estudio.
Ejemplo de parámetro
Supongamos que queremos controlar la cantidad de proteína involucrada en la dieta diaria de los niños de secundaria en una escuela en particular. Por lo tanto, debe considerar a todos los estudiantes de la escuela sin perder una sola unidad involucrada en la población. |
Otro ejemplo de parámetro puede ser el número de lesiones registradas en un determinado hospital en un determinado período de tiempo. En estos casos, no se pueden perder todas las unidades de esta población contabilizada. |
¿Cuáles son las estadísticas?
Solo como un parámetro, Estadísticas se utiliza para considerar una muestra de toda la población. Puede ser una muestra aleatoria o el resultado de algunos parámetros predefinidos.
Los usamos para seleccionar la muestra. Mientras que en las estadísticas no es necesario considerar cada unidad de la población. Pero el tamaño de la muestra dada debe ser lo suficientemente grande para garantizar la precisión de la información obtenida.
A pesar de ser menos precisas, las estadísticas se utilizan cuando es necesario recopilar datos de una amplia gama de poblaciones cuya única unidad no es precisa para ser responsable.
Para obtener una mejor precisión estadística, debe confiar en datos anteriores y herramientas analíticas, como la desviación estándar y la varianza.
Ejemplo de estadística
Algunas personas piensan que los trenes subterráneos son más baratos que los trenes locales para ir a las oficinas. Pero puede que no sea posible pedirle a cada persona su opinión individual. Por lo tanto, la sentencia general tiene la consideración de informe. Y el resto de los datos se derivan de los modelos en exhibición. |
Otro ejemplo estadístico es el número de personas a las que les gusta caminar por la noche. Una vez más, no puedes preguntarle a la gente si les gusta o no; por lo tanto, representó una gran cantidad de datos recopilados en un amplio rango. Por lo tanto, es mejor recoger la opinión de una muestra de población dada. |
Ahora discutiremos la principal diferencia entre estadística y parámetro en la forma tabular que se describe a continuación.
Notación de estadísticas frente a símbolos de parámetros
En el parámetro: La proporción de la población está descrita por PAGS.la media está descrita por µ (letra griega mu). σ2 muestra la varianza. No. muestra el tamaño de la población, σ (letra griega sigma) muestra la desviación estándar, σx̄ muestra el error estándar de la media, σ / µ muestra el coeficiente de variación, (X-µ) / σ muestra la variación estandarizada (z) e σp muestra el error estándar de la población.
En las estadísticas: El promedio está descrito por X (x-barra), la proporción de la muestra está descrita por pags (p-sombrero). S. mostrar la desviación estándar, s2 muestra la varianza. El tamaño de la muestra está descrito por norte, sx̄ muestra el error estándar de la media. sp muestra el error estándar de una proporción, s / (x̄) muestra el Coeficiente de variación, y (x-x̄) / s delinea la variación estandarizada (z).
factores | Estadísticas | Parámetro de población |
Significar | x̄ (llamada "barra x") | μ (letra griega "mu") |
Desviación Estándar | S. (Letras latinas") | σ (letra griega "sigma") |
Proporción | p̂ (llamado "p-sombrero") | PAGS. |
Diferencia | s2 | σ2 |
Tamaño de la poblacion | norte | No. |
Error estándar de la media | sx̄ | σx̄ |
Coeficiente de variación | s / (x̄) | σ / µ |
variante estandarizada | (x-x̄) / s | (X-µ) / σ |
error estándar de una proporción | sp | σp |
Leer también
Estadísticas vs parámetro (forma tabular)
Estadísticas | Parámetro |
Se utiliza para generar el resultado real con respecto a características particulares. | Se utiliza para generar el resultado estimado más posible con respecto a características particulares. |
Las estadísticas no son apropiadas para la amplia gama de datos; especialmente, si no se utilizan todas las unidades. | El parámetro se usa más convenientemente para datos grandes, incluso si no se identifican las unidades generales. |
Los resultados se derivan de los parámetros que siempre son fijos. | Los resultados de las estadísticas son responsables de la variación en el tamaño de la población dada. |
Se necesita más tiempo para recopilar los datos de la encuesta. | Se necesita menos tiempo que las estadísticas para recopilar datos de encuestas. |
Las estadísticas conducen a un aumento en el precio de la encuesta. | La métrica no necesita mucho dinero para encuestar. |
Es menos fiable en la encuesta. | Es más confiable en la encuesta. |
Esta tabla contiene todas las diferencias clave entre estadísticas y métricas que lo ayudan a comprender las diferencias básicas entre ellas.
Cuestionario: Estadísticas vs Parámetro
¡Veamos lo que aprendiste de los párrafos anteriores! Seleccione la respuesta correcta si el enunciado representa la estadística o el concepto de parámetro.
- Más de 2 de cada 25 adolescentes han sido diagnosticados con depresión o ansiedad.
(A) Estadísticas
(B) Parámetro
Esta declaración define la población general de adolescentes de EE. UU. Y es completamente imposible recopilar datos de individuos. Por lo tanto, es un Estadísticas declaración. |
- Las mujeres letonas lo consideran el más alto del mundo, que tiene una altura promedio de 170 cm.
(A) Estadísticas
(B) Parámetro
El número define la población de mujeres letonas. Es completamente imposible medir la altura de cualquier mujer letona. Por eso es un enunciado estadístico. |
- El examen final promedio de matemáticas de la escuela secundaria ha aumentado del 69 % al 77 % en las últimas décadas.
(A) Estadísticas
(B) Parámetro
El cambio porcentual define la población de secundaria en un nivel dado. Incluso si la población puede involucrar a más personas, todavía es fácil calcular el puntaje del registro escolar. Por lo tanto, es un parámetro. |
- El ingreso medio anual de 40 empleados es de $44 000 en la empresa X.
(A) Estadísticas
(B) Parámetro
La población de empleados definida en la empresa X. Y los datos se toman de los 40 empleados de esa empresa en particular. Por lo tanto, es un parámetro. |
Entonces, ¿qué debo preferir, estadística o parámetro?
Si un científico de datos se asigna a sí mismo para obtener resultados más precisos sobre los datos de salida, sería útil seguir las estadísticas. Cuanto más grandes sean los datos de población, más precisa será la respuesta.
Al mismo tiempo, el parámetro se utiliza para definir la población particular. Cuantos menos datos se midan, menor será la precisión del experimento. Deshabilite a los usuarios para obtener el valor promedio de la muestra general.
Por lo tanto, le recomendaría que use estadísticas si tiene muchos datos para obtener resultados precisos. Pero en caso de que necesite una solución particular de un grupo particular de personas de una encuesta, vaya con el parámetro.
Conclusión
Este blog ha proporcionado toda la información que necesita sobre estadística vs parámetro. Como proporciona la definición de parámetros y estadísticas para las tareas, ayuda con sus ejemplos. Aparte de eso, esta publicación tiene una tabla que diferencia ambos términos; también aclara que ambos términos pueden parecer similares pero tienen diferencias entre ellos. Por lo tanto, esta tabla te ayuda a conocer estas diferencias y recordar todas las notaciones que usas al resolver problemas de estadística.
El uso de estadísticas y parámetros varía de un propósito a otro. Significa que las estadísticas se pueden aplicar a los diferentes problemas y el parámetro se aplica a los diferentes problemas. Por eso se hace necesario saber dónde implementar el concepto de estadística y dónde implementar el concepto de parámetro.
He detallado todas las diferencias necesarias entre estadísticas y parámetros. Además, he sugerido a los lectores con qué concepto deberían ir y cuándo usarlo.
Incluso si le resulta difícil encontrar estadísticas o asignar parámetros, puede utilizar nuestros servicios, ya que proporcionamos datos de alta calidad con informes libres de plagio.
Preguntas frecuentes
¿Cuáles son las dos ramas principales de la estadística?
Las dos ramas principales de la estadística son la estadística descriptiva y la estadística inferencial.
¿Cuál es el ejemplo de parámetro?
Un parámetro describe a toda la población que se está estudiando. Por ejemplo, debe verificar la longitud promedio de una mariposa. Considéralo como una vara de medir, ya que dice algo sobre toda la población de mariposas.
¿Qué es una estadística por escrito?
Las estadísticas se utilizan para crear y examinar datos. Los datos deben ser transformados en números por los investigadores o en origen numérico.
Más contenido relacionado